Public Member Functions | Static Public Member Functions

linearCore Class Reference

linear core More...

#include <core.h>

Inheritance diagram for linearCore:
PsiCore

List of all members.

Public Member Functions

 linearCore (const PsiData *data=NULL, const int sigmoid=1, const double alpha=0.1)
 construcor
 linearCore (const linearCore &original)
 copy constructor
double g (double x, const std::vector< double > &prm) const
 evaluate the core of the sigmoid
double dg (double x, const std::vector< double > &prm, int i) const
 first derivative w.r.t. parameter i
double dgx (double x, const std::vector< double > &prm) const
 evaluate the first derivative of the core with respect to stimulus intensity
double ddg (double x, const std::vector< double > &prm, int i, int j) const
 second derivative w.r.t. parameters i and j
double inv (double y, const std::vector< double > &prm) const
 inverse of the core
double dinv (double y, const std::vector< double > &prm, int i) const
 deriviative of the inverse w.r.t. parameter i
std::vector< double > transform (int nprm, double a, double b) const
 transform logistic regression parameters to useful ones for this core
PsiCoreclone (void) const
 clone object by value

Static Public Member Functions

static std::string getDescriptor (void)
 get a short string that identifies the type of core

Detailed Description

linear core

The core of the sigmoid is simply a*x+b, where a and b are the first two parameters. This is the parameterization that would be used in the context of generalized linear models. The parameters do not have an obvious interpretation in terms of psychophysically meaningful quantities. However, it might well be that in this form, the parameters are more independent, which is particularly important for MCMC.


Constructor & Destructor Documentation

linearCore::linearCore ( const PsiData data = NULL,
const int  sigmoid = 1,
const double  alpha = 0.1 
) [inline]

construcor

Parameters:
data ignored
sigmoid ignored
alpha ignored

Member Function Documentation

double linearCore::ddg ( double  x,
const std::vector< double > &  prm,
int  i,
int  j 
) const [inline, virtual]

second derivative w.r.t. parameters i and j

Parameters:
x stimulus intensity
prm parameter vector
i index of the parameter we want for the first derivative
j index of the parameter we want for the second derivative

Reimplemented from PsiCore.

double linearCore::dg ( double  x,
const std::vector< double > &  prm,
int  i 
) const [inline, virtual]

first derivative w.r.t. parameter i

Parameters:
x stimululs intensity
prm parameter vector
i index of the parameter we want the derivative to

Reimplemented from PsiCore.

double linearCore::dgx ( double  x,
const std::vector< double > &  prm 
) const [inline, virtual]

evaluate the first derivative of the core with respect to stimulus intensity

Parameters:
x stimulus intensity
prm parameter vector

Reimplemented from PsiCore.

double linearCore::dinv ( double  y,
const std::vector< double > &  prm,
int  i 
) const [inline, virtual]

deriviative of the inverse w.r.t. parameter i

Parameters:
y value at which the derivative of the inverse should be evaluated
prm parameter vector
i index of the parameter we want the derivative to

Reimplemented from PsiCore.

double linearCore::g ( double  x,
const std::vector< double > &  prm 
) const [inline, virtual]

evaluate the core of the sigmoid

Parameters:
x stimulus intensity
prm parameter vector

Reimplemented from PsiCore.

double linearCore::inv ( double  y,
const std::vector< double > &  prm 
) const [inline, virtual]

inverse of the core

Parameters:
y value to be inverted
prm parameter vector

Reimplemented from PsiCore.

std::vector<double> linearCore::transform ( int  nprm,
double  a,
double  b 
) const [inline, virtual]

transform logistic regression parameters to useful ones for this core

Parameters:
nprm number of parameters in the whole model
a intercept parameter of the logistic regression model
b slope parameter of the logistic regression

Reimplemented from PsiCore.


The documentation for this class was generated from the following file: