logarithmic core More...
#include <core.h>
Public Member Functions | |
logCore (const PsiData *data=NULL, const int sigmoid=1, const double alpha=0.1) | |
construcor | |
logCore (const logCore &original) | |
copy constructor | |
double | g (double x, const std::vector< double > &prm) const throw (BadArgumentError) |
evaluate the core | |
double | dg (double x, const std::vector< double > &prm, int i) const |
evaluate derivative of the core | |
double | dgx (double x, const std::vector< double > &prm) const |
evaluate the first derivative of the core with respect to stimulus intensity | |
double | ddg (double x, const std::vector< double > &prm, int i, int j) const |
evaluate 2nd derivative of the core | |
double | inv (double y, const std::vector< double > &prm) const |
invert the core | |
double | dinv (double y, const std::vector< double > &prm, int i) const |
evaluate derivative of the inverse core with respect to parameter i | |
std::vector< double > | transform (int nprm, double a, double b) const |
transform parameters from a logistic regression model to starting values | |
PsiCore * | clone (void) const |
clone object by value | |
Static Public Member Functions | |
static std::string | getDescriptor (void) |
get a short string that identifies the type of core |
logarithmic core
The Weibull function typically gives a good fit for data from visual experiments. Unfortunately, the weibull distribution function does not allow for a straight forward fit using generalized linear models. However, the weibull distribution function is obtained if a gumbel is fit on logarithmic contrast values. This core is the same as the linearCore but for the logarithm of x
logCore::logCore | ( | const PsiData * | data = NULL , |
|
const int | sigmoid = 1 , |
|||
const double | alpha = 0.1 | |||
) |
construcor
data | use a data set to determine the correct scaling factors of initial values and initialize the objec | |
sigmoid | ignored | |
alpha | ignored |
double logCore::ddg | ( | double | x, | |
const std::vector< double > & | prm, | |||
int | i, | |||
int | j | |||
) | const [inline, virtual] |
evaluate 2nd derivative of the core
x | stimulus intensity | |
prm | parameter vector | |
i | first parameter with respect to which the derivative should be taken | |
j | second parameter with respect to which the derivative should be taken |
Reimplemented from PsiCore.
double logCore::dg | ( | double | x, | |
const std::vector< double > & | prm, | |||
int | i | |||
) | const [virtual] |
evaluate derivative of the core
x | stimulus intensity | |
prm | parameter vector | |
i | parameter with respect to which the derivative should evaluated |
Reimplemented from PsiCore.
double logCore::dgx | ( | double | x, | |
const std::vector< double > & | prm | |||
) | const [virtual] |
evaluate the first derivative of the core with respect to stimulus intensity
x | stimulus intensity | |
prm | parameter vector |
Reimplemented from PsiCore.
double logCore::dinv | ( | double | y, | |
const std::vector< double > & | prm, | |||
int | i | |||
) | const [virtual] |
evaluate derivative of the inverse core with respect to parameter i
y | value at which to evaluate the inverse | |
prm | parameter vector | |
i | take derivative of the inverse core with respect to parameter i |
Reimplemented from PsiCore.
double logCore::g | ( | double | x, | |
const std::vector< double > & | prm | |||
) | const throw (BadArgumentError) [virtual] |
double logCore::inv | ( | double | y, | |
const std::vector< double > & | prm | |||
) | const [inline, virtual] |
invert the core
y | value at which to evaluate the inverse | |
prm | parameter vector |
Reimplemented from PsiCore.
std::vector< double > logCore::transform | ( | int | nprm, | |
double | a, | |||
double | b | |||
) | const [virtual] |
transform parameters from a logistic regression model to starting values
nprm | number of parameters in the final model | |
a | intercept of the logistic regression model | |
b | slope of the logistic regression model |
Reimplemented from PsiCore.