Public Member Functions | Static Public Member Functions

logCore Class Reference

logarithmic core More...

#include <core.h>

Inheritance diagram for logCore:
PsiCore

List of all members.

Public Member Functions

 logCore (const PsiData *data=NULL, const int sigmoid=1, const double alpha=0.1)
 construcor
 logCore (const logCore &original)
 copy constructor
double g (double x, const std::vector< double > &prm) const throw (BadArgumentError)
 evaluate the core
double dg (double x, const std::vector< double > &prm, int i) const
 evaluate derivative of the core
double dgx (double x, const std::vector< double > &prm) const
 evaluate the first derivative of the core with respect to stimulus intensity
double ddg (double x, const std::vector< double > &prm, int i, int j) const
 evaluate 2nd derivative of the core
double inv (double y, const std::vector< double > &prm) const
 invert the core
double dinv (double y, const std::vector< double > &prm, int i) const
 evaluate derivative of the inverse core with respect to parameter i
std::vector< double > transform (int nprm, double a, double b) const
 transform parameters from a logistic regression model to starting values
PsiCoreclone (void) const
 clone object by value

Static Public Member Functions

static std::string getDescriptor (void)
 get a short string that identifies the type of core

Detailed Description

logarithmic core

The Weibull function typically gives a good fit for data from visual experiments. Unfortunately, the weibull distribution function does not allow for a straight forward fit using generalized linear models. However, the weibull distribution function is obtained if a gumbel is fit on logarithmic contrast values. This core is the same as the linearCore but for the logarithm of x


Constructor & Destructor Documentation

logCore::logCore ( const PsiData data = NULL,
const int  sigmoid = 1,
const double  alpha = 0.1 
)

construcor

Parameters:
data use a data set to determine the correct scaling factors of initial values and initialize the objec
sigmoid ignored
alpha ignored

Member Function Documentation

double logCore::ddg ( double  x,
const std::vector< double > &  prm,
int  i,
int  j 
) const [inline, virtual]

evaluate 2nd derivative of the core

Parameters:
x stimulus intensity
prm parameter vector
i first parameter with respect to which the derivative should be taken
j second parameter with respect to which the derivative should be taken

Reimplemented from PsiCore.

double logCore::dg ( double  x,
const std::vector< double > &  prm,
int  i 
) const [virtual]

evaluate derivative of the core

Parameters:
x stimulus intensity
prm parameter vector
i parameter with respect to which the derivative should evaluated

Reimplemented from PsiCore.

double logCore::dgx ( double  x,
const std::vector< double > &  prm 
) const [virtual]

evaluate the first derivative of the core with respect to stimulus intensity

Parameters:
x stimulus intensity
prm parameter vector

Reimplemented from PsiCore.

double logCore::dinv ( double  y,
const std::vector< double > &  prm,
int  i 
) const [virtual]

evaluate derivative of the inverse core with respect to parameter i

Parameters:
y value at which to evaluate the inverse
prm parameter vector
i take derivative of the inverse core with respect to parameter i

Reimplemented from PsiCore.

double logCore::g ( double  x,
const std::vector< double > &  prm 
) const throw (BadArgumentError) [virtual]

evaluate the core

Parameters:
x stimulus intensity
prm parameter vector

Reimplemented from PsiCore.

double logCore::inv ( double  y,
const std::vector< double > &  prm 
) const [inline, virtual]

invert the core

Parameters:
y value at which to evaluate the inverse
prm parameter vector

Reimplemented from PsiCore.

std::vector< double > logCore::transform ( int  nprm,
double  a,
double  b 
) const [virtual]

transform parameters from a logistic regression model to starting values

Parameters:
nprm number of parameters in the final model
a intercept of the logistic regression model
b slope of the logistic regression model

Reimplemented from PsiCore.


The documentation for this class was generated from the following files: